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Generalized fracture mechanics 
Part 2 Materials subject to genera/yielding 

E.H. ANDREWS, E.W. B I L L I N G T O N *  
Department of Materials, Queen Mary College, Mile End Road, London, UK 

The application of generalized fracture mechanics to ductile materials is considered. The 
deformations leading to crack propagation in SEN specimens of a copper-beryllium alloy 
in two conditions were established experimentally and can be described in terms of the 
generalized theory. In particular, it was possible to define and measure a surface work for 
fracture propagation in specimens subject to general yielding. The values of surface work 
obtained were 7.5 x 108 mJ m -2 for the alloy in a low yield stress (235 MPa) condition 
and 1.2 x 108 mJ m -2 for the high yield-stress (725 MPa) condition. 

1. I n t r o d u c t i o n  
Several methods, none of them altogether satis- 
factory, exist for the mechanical analysis of 
fracture in materials that undergo plastic yielding. 
They include crack opening displacement methods 
[1-3] and Rice's J contour integral [4-6]  as 
discussed in a recent review by Turner [7] on 
yielding fracture mechanics. In botk cases the 
fracture event is characterized by a critical value of 
the parameter concerned (8c or Je) which, hope- 
fully, is more or less independent of the shape, 
size, crack length and method of loading of the 
body under test. 

In Part 1 [8] a generalized theory of fracture 
mechanics was outlined which potentially provides 
an additional approach to yielding fracture 
mechanics. In this theory the energy-density 
distribution throughout a specimen containing a 
crack is treated as an unknown function of the 
appropriate variables, and the changes in local 
energy-density caused by crack propagation are 
integrated over the entire stress field to give the 
net energy available for crack propagation. 

In linear elastic media, of course, this method 
simply repeats the ciassical work of Griffith. The 
use of an unknown function for the energy-density 
however, relaxes the requirements of linearity and 
infinitesimal strain, so that an energy release rate 
( - d g / d A )  can still be defined when non-linear 
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and finite elastic deformations occur in any part of 
the stress field. This provision then yields results 
compatible with the results of Rivlin and Thomas, 
employed so successfully to analyse the tearing of 
rubberlike materials [9]. It also makes the theory 
essentially equivalent to the J-integral theory for 
non-linear elastic materials, since it can be shown 
that [101 

J = -d• /dA (1) 
so that 

Sic ~- ~" (2) 

where g is the total input energy of the system, A 
the crack area and ~" is the symbol employed in 
Part 1 for the critical energy release rate for crack 
propagation. 

The generalized theory, however, goes further 
to consider explicitly the energy losses occurring 
in elements which unload as the crack begins to 
propagate. Under these circumstances, of course, 
energy-density is an input, and not a potential, 
energy whilst (--d&/dA) becomes an apparent 
energy release rate. In these respects, the theory 
proposed in Part 1 appears to be unique and, as a 
direct consequence, it is possible not only to 
evaluate parameters such as ( - - d g /d A )o r  J in 
terms of accessible quantities (like stre~s and linear 
dimensions) but also to provide a theoretical 
expression for the critical values 5 or Jc of such 
parameters. This is the most important new 
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feature of 
Specifically, 

| 
t, 

the theory proposed in Part 1. 

Y = go':I;'(c, T, eo) (3) 

E g(x,y, eo) 6x6y ;1 

~.g(x, y, eo ) 6x6y -- ~ ~g(x, y, eo) 8x8 
~o (4) 

where: ~ ' - - J i c  is the apparent surface work of 
fracture, �9 is the newly defined "loss function", 
g is the derivative with respect to x and y of the 
input energy density distribution function, x, y are 
the reduced (dimensionless) cartesian co-ordinates, 
and /3 is the fractional energy loss of an element 
subject to unloading. PU indicates summation only 
over unloading elements, and g0 is the actual 
energy required to break unit area of interatomic 
bonds across the fracture plane (the surface energy 
of the solid on one definition). Equation 3 has 
been highly successful in explaining certain 
adhesive failure phenomena [11, 12], whilst 
recent work on elastomers [13] has shown that 
can be evaluated from the strain field around a 
crack, and the appropriate hysteresis data, to give 
excellent agreement with measured (~-/~'o)ratios 
(Equation 3). 

The purpose of this paper is to report pre- 
liminary work on metal specimens which deform 
plastically before the onset of crack propagation. 
Any attempt to validate the generalized theory for 
a given class of materials must contain two stages. 
The first is to validate the equation expressing the 
apparent energy release rate (--dg~/d_A) in terms of 
accessible quantities, whilst the second is to 
explore the truth of Equation 3. The first step is 
by no means trivial and most of this paper is 
devoted to it. 

For the case of either a cent re  crack in an 
infinite sheet under uniaxial tensile load, or the 
corresponding "half-plane" which constitutes an 
edge crack in a semi-infinite sheet, the appropriate 
equation is [8], 

( - d a / d A )  = k, (Co) two (5) 

where kl is a function only of the strain-at-infinity 
eo (or equivalently, of  W0), c is the crack length 
and W0 is the input energy density at infinity. For 
finite specimens k~ becomes a function of the 
specimen dimensions and eo, Wo are the 
appropriate quantities at points remote from the 
crack. 

The main purpose of this paper is to show that 
( - -dg/dA) for an elastic-plastic material can 
indeed be presented by Equation 5; additionally, 
the function k~ (%) is evaluated and the critical 
value, ~', of ( - d ~ / d A )  is shown to be constant 
under most, but not all, of the circumstances 
studied. 

The experimental results are consistent with the 
idea that ~- has two regimes of constancy with a 
rapid transition between the two. Regime I applies 
to a small, elastically contained plastic zone and 
regime II to a plastic zone which interacts with the 
boundaries of the specimen. In a future paper we 
hope to demonstrate that just such a result can be 
inferred from Equations 3 and 4 using a simplified 
model of the plastic zone to evaluate ~ and 
thence ~. 

2. Definition of k 1 (eo) 
In the previous paper [8] some ambiguity attaches 
to the definition of the energy change associated 
with unit area of crack propagation in an elastic 
medium, i.e. the quantity --(dS~/dA) where 8~ is 
the total energy and A the crack area. This 
ambiguity in turn affects the definition of kl (eo), 
though not the validity of Equation 5. Although 
ka (eo) is treated as an empirical quantity in this 
paper it is appropriate to resolve the matter at this 
point. 

Consider the load-deformation curves, in 
tension, of identical sheets of an elastic, but non- 
linear material containing centre or edge cracks of 
different lengths (oriented perpendicular to the 
loading direction). A series of such curves is shown 
in Fig. 1 inchiding the curve for c = O, i.e. a sheet 
without a crack. 
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Figure 1 Load-deflection curves for SEN specimens con- 
taining cracks of different lengths (schematic). 

Propagation of the crack from a length 2cl to a 
length 2c= at constant load (and thus at constant 
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Co, Wo) involves doing work on the specimen. This 
work being given by the area BCGF. The total 
elastic energy of the specimen, however, increases 
by the net amount Ag such that, 

[Ag/AAle ~ = (BCGF -- OBC)14h(c2 -- c,) (6) 

where h is the sheet thickness. Alternatively, if 
crack propagation occurs at constant deflection 
(so that the applied forces do no work during 
propagation), the specimen suffers an energy loss 
equivalent to area OBD. Thus 

[AP~/AA]~ = --(OBD)/4h @2 -- cl). (7) 

Since in the limit c2 -+ c1, area OBD-+ area OBC, 
we have from simple geometry in Fig. 1 

- - P  Id~/dAIco (8) Id~/dAl~ 1 - - p  

where 0 < p < 1 and p = 0.5 if curves OB, OC are 
linear. In the general, non-linear case 

p = p(%). (9) 

In Part 1 the surface work ~ was wrongly 
equated to the critical value o f - - ( d g / d A ) e  o 
whereas it is properly defined as the critical value 
of --(dg/dA)~. We thus re-define kl(eo) as 
-p / (1  --p) times the expression given in Part 1, 
namely 

--P g(x ,y ,  eo) 6xSy (10) it,(%)- 1 - p  

where, as before, g = (xOf/3x +yOf/~y}. Then, as 
before 

-- IdP~/dA [8 = kl(eo)CWo (11) 

= kl (eo)CWo,~it. (12) 

These results, of course, are derived on the 
assumption that the material is elastic. In dealing 
with inelastic materials, as discussed in Part 1, we 
retain Equation 12 as a definition of the surface 
work Y which, however, is no longer identifiable 
as a critical "energy release rate" since g contains 
inelastic work terms. Similarly, 14/o is no longer a 
stored energy density but simply an energy input 
density. Stated simply, ~, is a fictional quantity 
equal to the critical energy release rate that would 
have obtained if the material had been elastic. 

This fiction is not, of course, limited to the 
theory described in Part 1; it is employed every 
time linear elastic fracture mechanics is applied 
to real materials. The main novelty of  the general- 
ized theory is its ability to relate the parameterS" 
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to the genuine elastic energy release which actually 
drives the crack in inelastic solids. 

3.  M a t e r i a l s  
The material chosen for the present study was a 
Cu-Be alloy of composition Cu 1.8 wt % Be 0.28 
wt % Co. This alloy was selected because its de- 
formation behaviour in tension exhibits a well- 
defined elastic-plastic character and because, b y  
suitable conditioning treatments, the yield stress 
and plasticity can be varied, predictably, between 
wide limits. In this paper we report on one con- 
dition (designated A) which had been solution- 
treated for 1 h at 800 ~ C and water-quenched, and 
a second condition (designated H ) w h i c h  had 
received a 50% cold-rolling treatment. Typical 
mechanical properties were as follows: 

Temper Tensile Yield VPN 
strength (NPa) strength (MPa) 

(strain) 

A 500 235 (0.9%) 100 
H 775 725 (2.9%) 220 

Fig. 2 shows engineering-stress versus strain curves 
for the two conditions. 
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Figure 2 Actual stress-strain curves for conditions A and 
H. (X) indicates fracture. 

4. Experimental 
The initial purpose of the study was to determine 
the effect of blunt, single-edge cracks on the 
stress-strain and fracture properties of thin sheets 
of the materials. All testing was carried out on an 
Instron tensile testing machine. 

For condition A three specimen widths were 
employed; narrow specimens 1.5mm thick and 



only 4 .67mm wide, intermediate specimens 
1.0 mm thick and 20 mm wide, and wide speci- 
mens 1.0 mm thick and 42.0 mm wide. For the 
condition H only 1 mm thick and 42.0 mm wide 
specimens were tested. All specimens were 
machined with dumb-bell ends and had a gauge 
length of  100 mm. 

Single edge cracks were machined into the 
specimens half way along their length and perpen- 
dicular to the tensile axis. In all cases the cracks 
were terminated by a drilled hole, diameters of  
0.6, 1.0 and 1.25 mm being used in different 
experiments to eliminate crack-tip radius as an un- 
known variable. Although results obtained were 
insensitive to changes in radius within this range, 
it does not follow that this would be true of  sharp 
cracks, and this must be kept in mind when 
evaluating the experimental data. 

Crack length was varied as follows: 

narrow specimens A 0, 0.66, 1.05, 1.40, 1.75 mm 
intermediate specimens A 0, 2.1, 3.1, 3.6, 4.1, 4.6 mm 
wide specimens A 0, 1, 2, 4, 6, 8 mm 
wide specimens H 0, 1,2, 4, 6, 8, 9, 12, l 3 mm. 

The specimens were subject to tensile loading at a 
cross-head speed of  1 mmmin  -1 and the tip of  the z 
crack watched continuously for signs of  growth, -~ 
using a travelling microscope. At the first sign of  
propagation, the "event marker" was used to 
indicate the corresponding point on the l o a d -  
deformation curve. 

Z 

o 

5. Results and analysis 
5.1. Evaluation of k 1 (%) 
Typical load-deformat ion curves for specimens 
containing cracks of  different length are shown in 
Figs. 3 to 5. Fig. 3 shows typical data for material 
A and specimens of  width 4.67 mm; Fig. 4, those 
for material A and specimens of  width 42 mm, and 30 
Fig. 5, those for material H and width 42 ram. 
Each curve except those for c = 0, is terminated 
by a cross which represents the point at  which the 2c 
crack was observed to begin to propagate, z 

The purpose of  the analysis of  results is to --- 
evaluate from the above data the quantity 
(--dg~/dA)8 for various W0, c values in order to t0 
derive values for kl (%) or kl (14Io) (equivalent, 
since eo, I4Io are uniquely related) using the 
equation 

- - ( d a / d A  h = k, (%) cWo. (5) 

The left-hand side of  this equation is obtained b y  
first measuring the quantity ( ~ o -  g )  in Fig. 1 

3 ~ = 0 m m  

2 ~ ~ - 4 0  1-40 

1 

0 i i i 
2-5 5-0 7.5 
elongation / mm 

Figure 3 Actual load-deflection curves for narrow 
specimens of condition A containing single edge cracks of 
different lengths. (x) indicates fracture propagation. 
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Figure 4 As Fig. 3 but for wide specimens of condition A. 
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Figure 5 As Fig. 3 but for wide specimens of condition H. 
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given by the area 

O A B F -  OBF = OAB 

for a given Wo and various c values. When plotted 
against c, the quantity ( g o -  8) gave a well- 
behaved square-law curve, the slope (--dS/dc)w0, 
of which was then obtained graphically and 
plotted, linearly, against c. These two curves are 
shown for a particular case, in Fig. 6. The fact that 
(--dS/dA) {i.e. (1/2h)(--d,$/dc)} plots linearly 
against c for constant I4/o is, of course, an im- 
portant vindication of Equation 5 and demon- 
strates its validity even where the whole specimen 
is subject to plastic deformation. 

/ 

io ~ ~ l o  x I 

0.5 11o 1'.5 ~.o 
crack l~ngth / turn 

Figure 6 Evaluation of  k~ (see text) .  

The value of kl (Wo) is obtained from the slope 
S, of the linear plot in Fig. 6, by 

k,(Wo) = S/2hWo (13) 

where h is the specimen thickness and Wo is the 
input energy density for the uncracked specimen 
up to the strain eo. 

The function kl (Wo) has the classical value of 

]'/ 6 0 ~  

k~ 

4 0 ~ / \  �9 

2 ~ 1 7 6  ~ 1 7 6  ~  

10 2 0  3'0 40 5~) 

Wo/ MJm -3 

Figure 7 k~ as a func t ion  of  W o for condi t ion A. e, 
narrow specimens;  o, wide specimens.  
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rr for plane stress conditions as Wo-+0 i.e: for 
linear elastic material and infinitesimal strains [8]. 
Its behaviour for the present series of experiments 
is shown in Fig. 7 for the condition A. 

The results for ka exhibit an initial, very steep, 
rise from the value of 7r at 14Io = 0 to values in the 
range 20 to 40, for wide specimens and even 
higher, up to 80, for the narrow specimens: kl 
then falls again with increasing W0 to a much more 
reproducible value of around 25 and continues to 
decrease slowly thereafter to 20 at the highest 
W0 values used. 

The "peak" area for ka, over the range 0 < Wo 
< 8 MJ m -3, corresponds to the onset of whole- 
sale yielding in the specimen. In this range the kl 
values are badly scattered, but are noticeably 
higher for the narrow specimens. This almost 
certainly reflects the "hinging" mode of crack 
opening observed in these specimens, in which 
they undergo in-plane bending, causing the crack 
to gape. Clearly the plastic strain field is different 
in this case from that in the wider specimens 
where no hingeing can occur and this is reflected 
in the behaviour of kl. 

For the condition A, no crack growth was 
observed until the specimen had become fully 
plastic, so that fracture occurred only in the region 
Wo > 8 MJ m -a , i.e. where kl has settled down to 
a slowly varying value of 20 to 25. 

A consequence of the dependence of k I o n  Co 
(or Wo) alone is that, from Equation 5, 
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Figure 8 Data for narrow specimens of  condit ion A 
showing validity o f  Equat ion  14. Filled symbols  denote  
fracture p o i n t . v ,  c = 0 . 6 6 m m ;  o, 1 .05ram;  ,x, 1 . 4 0 m m ;  
o, 1.75 m m .  



i.e. the left-hand side should be a unique function to a value of about 17 in the region of  gross 
of  Wo, though only for linear, infinitesimal strain plasticity. 
conditions will this be a linear relationship since 
only then is kl a constant. This behaviour is shown 5 .2 .  The surface work 
in Fig. 8 for the narrow specimens and Fig. 9 for The critical value of  ( - d g / d A ) ~  is, by definition, 
the wide specimens, and these figures bear out the surface work ~ a n d  is given by 
fully the expectation of  Equation I4. The effect 
of  hinging is evident in the pronounced curvature 
of  the plot for the narrow specimens. 
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v 250 
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Figure 9 As Fig. 8 but for wide specimens of condition A. 
o, c = 1 mm;a, 2mm;D,4mm;v, 6mm;G 8ram. 

Analogous results for the cold-worked con- 
dition A are shown in Fig. 10. In this case a linear 
relation exists with a slope kl = rr up to the onset 
of  gross yield i.e. the material obeys linear fracture 
mechanics. As the specimen stress-strain curve 
becomes non-linear, however, the curve turns 
sharply upwards. In view of  the results for the 
softer alloy shown in Figs. 8 and 9, it is possible 
that the curve in Fig. 10 is, in fact, sigmoidal as 
shown by the broken line; i.e. kl rises from 7r to 
some transitory, high value, before settling down 
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Figure 10 As Fig. 8 but for wide specimens of condition 
H. A c = l m m ;  u, 2mm; o, 4mm; o, 6mm;v ,  8mm. 

Y = k,(eo) cWo, ,. (8) 

For brittle materials ~ is sensibly constant for a 
given solid under given conditions of  rate and 
temperature and provided no plane stress-to-plane 
strain transition intrudes. The same is true of  
elastic but highly extensible materials like cross- 
linked elastomers. 

It has not previously been possible to calculate 
surface work for solids which undergo substantial 
plastic deformation before fracture, Using 
Equation 12 however, we have 

kl 14Io,~t = c-1 (11) 

and a plot of  kl Wo, eat against c -1 should reveal 
whether or not a constant quantity ~ exists. 
Before making such a plot it is helpful to correct 
for the finite width of the specimen, since the 
above equations refer to infinite width. Rather 
than use established elastic corrections for finite 
width, whose application to plastic plates is hardly 
justifiable, we introduce a simple correction, 
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Figure 11 Plot of kt Woe against (c -~ -- b -1 ) for condition 
A having slope equal to the surface work. o, narrow 
specimens, 1.0 mm tip radius; •, wide specimens, 1.0 mm 
tip radius; ,% intermediate specimens, 1.25 mm tip radius; 
e; intermediate specimens, 0.6 mm tip radius. 
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replacing c -1 by (c -1 - - b  -1 ) where b is the speci- 
men width. This satisfies the boundary conditions 
that Wo,~t ~ 0 as c ~ b and that the  correction 
itself tends to zero as b -+ oo. 

The resulting plots for conditions A a n d H  are 
shown in Figs. 11 and 12. Most data are available 
for alloy A where it will be seen that a linear 
relationship (i.e. constant ~ )  fits the data well and 
includes points for specimen widths b, ranging 
from 4.67 to 42 mm and for different crack tip 
radii. The value of ~ for this material derived from 
the best straight line in Fig. 11, is 7 .5x  10 s 
mJ m -~ . 
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Figure i2 As Fig. 11 but for condition H (wide 
specimens). Point for i mm crack is off graph but its co- 
ordinates shown at • 

Fig. 12 reveals a more complicated situation for 
condition H. For cracks exceeding 2 mm in length 
the plot is linear giving a value for ~ o f  1.2 x 108 
m J m  -2. For crack lengths of 2 and l mm 
however, the points lie well off the line, the 
apparent values of ~ increasing as follows: 

Crack length (mm) Apparent (mJ m -2) 

> 2 1.2 • 108 
2 2.7 • 108 
1 6.7 x 108 

Reference to Fig. 5 shows that specimens of 
condition H with crack lengths exceeding 2 mm, 
whilst displaying non-linear behaviour, do not 
exhibit gross yielding. Those with c ~< 2 mm show 
the attainment of extension at constant load. 
Specimens of condition A, in contrast, all fracture 
after gross yield and it is significant that the 
value obtained for condition A (7.5 x 108 m J m  -2) 

is close to that obtained for the shortest crack 
length in condition H specimens, where gross 
yielding is also fully established. 

These observations are consistent with the idea 
that, for a given material, the surface work ~ has 
two regimes of constancy. The first applies as long 
as the plastic zone is elastically contained i.e. does 
not intersect the boundaries of the specimen. As 
this containment fails, and the specimen thus 
begins to exhibit gross yielding, the surface work 
~increases .rapidly until it achieves a new con- 
stan:cy (regime two) for the case of a fully plastic 
specimen as typified by condition A. 

The transition between regimes one and two 
can be induced by changes in crack length, 
producing a notch-embrittlement effect. The same 
transition might, plausibly, be induced by changes 
in notch radius, temperature or rate of strain. 

6. Conclusions 
The use of generalized fracture mechanics makes it 
possible to analyse, rationally, the conditions for 
crack propagation in a fully ductile material in a 
manner analogous to the treatment of  brittle solids 
by :linear fracture mechanics. In particular it is 
possible to define and measure a unique "surface 
work" for crack propagation in a fully ductile 
alloy. The same analysis applied tO a material 
which exhibits "notch embrittlement" gives a 
unique value for the brittle surface work, but a 
rising value as the crack length is diminished below 
a certain critical value. It is suggested that the 
dependence of surface work upon crack length in 
such cases might be used to quantify the 
phenomenon of notch embrittlement. 
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